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Abstract

In this study, we consider a class of nonlinear aeroelastic stability problems, where geometric nonlinearities arising from

large deflections and rotations in the structure interact with aerodynamic nonlinearities caused by moving shocks.

Examples include transonic panel flutter and flutter of transonic wings of high aspect ratio, where the presence of both

structural and aerodynamic nonlinearities can have a dramatic qualitative as well as quantitative effect on the flutter

behavior. Both cases represent inherently nonlinear fluid–structure problems, where neglecting either the structural or the

fluid nonlinearities can lead to completely erroneous stability predictions. The results presented in this paper illustrate the

rich and in some cases surprising flutter behaviors of transonic wings, and the inherent limitations of the von Kármán

nonlinear plate model in strongly nonlinear fluid–structure interaction problems of this type.

r 2008 Published by Elsevier Ltd.
1. Introduction

Advances in computational methods have made it feasible to study fluid–structure interaction problems
where both structural and fluid nonlinearities must be considered in order to capture the correct stability
behavior. Previous studies have focused on either structural nonlinearities, especially geometric nonlinearities
arising from large deflections [1–5], or fluid nonlinearities arising from shock motion in transonic flows [6–9].
Fluid–structure interaction problems involving both structural and fluid nonlinearities are only recently being
investigated [10], and the results are less well understood.

Many of the emerging problems in aeroelasticity involve very flexible wing structures; for example, highly
optimized unmanned aerial vehicles (UAVs) and high altitude long endurance (HALE)-type aircraft.
Although linear elastic behavior may still be assumed in many of these cases, geometric nonlinearities arising
from large deflections and rotations can no longer be ignored, and linear structural codes cannot be expected
to predict the correct static or dynamic stability behaviors. The Helios aircraft built by AeroVironment and
operated by NASA is a good example of this category, where wing tip deflections during steady flight in the
ee front matter r 2008 Published by Elsevier Ltd.
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Nomenclature

A wing aspect ratio
Ai triangular area coordinates
c wing or panel chord
D Eh3/12(1–n2) ¼ plate flexural rigidity
e total energy (fluid)
E Young’s modulus
Etot total energy (structure) ¼ T+U

G shear modulus
h plate thickness
k oc/2UN ¼ reduced frequency; also shear

correction factor
M Mach number
n rotation vector
nd deformed nodal vector
p pressure
q rNUN

2 /2 ¼ dynamic pressure
q generalized coordinate vector
t time
T kinetic energy
u fluid velocity vector with components ui

U mesh velocity vector with components Ui

u,v,w plate displacements in the x, y, z direc-
tions

U strain energy
UN freestream velocity at upstream infinity
a angle of attack
bx, by rotations of normals in the x– z and y– z

planes, respectively
g ratio of specific heats
{g} shear strains
{em} membrane strains
{en} nonlinear strains
{k} plate element curvatures
l taper ratio
L sweep angle
n Poisson’s ratio
r air density
rm plate mass density
t nondimensional time ¼ o1Tt/2p
o circular frequency
o1T frequency of first torsion mode in

vacuum

Superscripts and subscripts

r, LE, TE wing root, leading, and trailing edge,
respectively

N conditions at upstream infinity
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range of 10–20 ft were observed, with dynamic excursions beyond 20 ft. The aircraft was destroyed in a flight
mishap in June of 2003. The instability that caused the structural breakup of the aircraft appears to have
involved nonlinear aero-structural–controls interactions.

The von Kármán nonlinear plate model has been used in a number of previous nonlinear flutter studies,
including supersonic panel flutter [1,2], transonic panel flutter [11,12], and limit cycle oscillation (LCO)-type
flutter studies of low-aspect-ratio wings [4,5,13]. Recent results, however, indicate that this nonlinear
strain–displacement model is not suitable for incorporation into a general-purpose aeroelastic code, because of
its relatively limited range of validity and high sensitivity to the in-plane boundary conditions [5,10]. This is
especially true for cantilever swept wings, where the von Kármán model overestimates the stiffening effect
from the in-plane strains, leading to an underestimation of the LCO amplitudes. This excess stiffness is clearly
evident in the comparisons between theory and experiments of LCO amplitudes of the flat plate delta wings
studied in Refs. [5,13].

The objective of this paper is to show that geometrically nonlinear aeroelastic problems with strong fluid
nonlinearities arising from shock motion are inherently nonlinear, in the sense that neglecting either the
structural or the fluid nonlinearities can lead to completely erroneous stability predictions. As a result, these
problems can exhibit a pronounced sensitivity to the accuracy and fidelity of the structural model. Not
surprisingly, this sensitivity is problem dependent. In the case of transonic flutter of thin plates, for example,
the von Kármán model appears to yield results that are qualitatively and quantitatively correct, within the
expected engineering accuracy, at least for cases where none of the edges are free. But in the case of a
cantilever swept wing of high aspect ratio, the von Kármán model is not applicable, because tip deflections of
the order of the wing chord must be considered. Furthermore, because of the presence of shocks on the wing
surface, there is a strong interaction between the structural nonlinearities arising from large deflections and
aerodynamic nonlinearities arising from shock motion. In the swept wing case, the so-called structural
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washout effect plays an important role, and also interacts with the aerodynamic nonlinearities. As the wing
bends, it unloads the outboard region, reducing the shock strengths and moving the shocks forward, towards
the leading edge. The weaker and more forward shocks lead to an earlier transition (at lower amplitudes) from
Type A (continuous) to Type B (intermittent) shock motion, resulting in a limit cycle flutter mode that persists
over a relatively wide range of dynamic pressures and flight altitudes.

In the case of panel flutter, interactions between the structural and aerodynamic nonlinearities in the
strongly nonlinear transonic range, 0.95pMp1.2, lead to travelling wave flutter, in the generalized sense, and
the panel motions at different chord locations are significantly out of phase. It is interesting to note that the
prevailing flutter mode is a travelling wave even in panels of low chord-to-width ratios, where earlier studies
based on linearized aerodynamics predict single-degree-of-freedom flutter [14–16]. Inclusion of structural
nonlinearities using a von Kármán plate model does not change this conclusion; see Fig. 1 of Ref. [1], which
indicates that travelling wave flutter is not predicted by linearized aerodynamic theories, except for plates of
very large chord-to-width ratio. Only when both structural and aerodynamic nonlinearities are modeled do we
obtain travelling wave flutter in the high-aspect-ratio case [12]. As the Mach number is decreased from the
supersonic and into the transonic region, the flutter mode changes from a standing wave to a travelling wave.
The presence of oscillating shock waves on the panel surface plays a significant role in this flutter mode
change. Travelling wave flutter was indeed observed in some of the early panel flutter tests [17,18]. In
experiments involving buckled panels, travelling wave flutter in the generalized sense has been observed at
supersonic Mach numbers as well [19,20].
2. Computational approach

Two different finite element models of the geometric nonlinearities are considered. The first is the von
Kármán nonlinear plate model, which has been used in several previous studies of panel and wing flutter
[1,2,4,11–13]. This model is based on Kirchhoff–Love plate theory and is only used in calculating the transonic
panel flutter results in the present paper.

The second computational model is based on a nonlinear finite element formulation of the fluid–structure
system, Fig. 1, using individual element-fixed local Lagrangian coordinate systems, Fig. 2, to account for the
geometric nonlinearities arising from large displacements and rotations [10]. The approach is a generalization
of the Direct Eulerian–Lagrangian computational scheme [9], implemented using a Galerkin finite element
discretization of the Euler equations in the fluid domain and Mindlin–Reissner finite elements in the structural
domain. Finite rotation relations are used to update the nodal displacement vector at each stage in the
Runge–Kutta time-stepping scheme.

In both computational schemes, the calculations are done at the element level in the fluid and structural
domains, and the fluid–structure system is time-marched as a single dynamical system. The exact nonlinear
fluid–structure boundary condition is satisfied using the actual deformation of the structure, as defined by the
finite element shape functions and the local element coordinates. To ensure strict synchronization between the
fluid and structural domains, the unsteady fluid pressures at the structural surface are calculated in a time-
accurate manner by solving the two-dimensional (2D) or three-dimensional (3D) Euler equations, within the
same multistage Runge–Kutta loop.
3. Nonlinear structural models

3.1. Von Kármán finite element plate model

The panel is modeled using 2D plate elements to represent a thin, isotropic plate undergoing
cylindrical bending. The cylindrical bending assumption approximates a plate of large width-to-chord ratio,
and neglects variations of lateral plate displacements in the spanwise (y) direction. As is customary, the middle
surface (MS) of the undeflected plate is in the x,y plane, and the flow is in the positive x-direction; see Fig. 3.
Both pinned and clamped boundary conditions at the leading and trailing edges (x ¼ 0, c) have been
implemented. The axial displacements at the supports are assumed zero. The latter assumption introduces a
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Fig. 2. Eulerian and Lagrangian coordinate systems used in the direct Eulerian–Lagrangian computational scheme.
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Fig. 1. The direct Eulerian–Lagrangian computational approach.
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nonlinear term in the structural equations, resulting from the in-plane stretching of the MS of the plate as it
deforms.

The finite element matrices are based on the von Kármán plate equations, which in the 2D case can be
reduced to the following single equation for the lateral deflection of the plate:

D
q4w

qx4
� ðNx þNx0Þ

q2w
qx2
þ rmh

q2w
qt2
¼ p1 � p (1)

Cavity effects are ignored, i.e., the pressure in the cavity below the plate is assumed constant and equal to
pN. Here, Nx0 is the in-plane loading due to external forces, and Nx is the additional in-plane force induced by
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Fig. 3. (a) Panel geometry and coordinate system, (b) two-dimensional idealization for a panel of high aspect ratio.
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the deflection w:

Nx ¼
Eh

2c

Z c

0

qw

qx

� �2

dx (2)

Eq. (1) is discretized using standard finite element techniques, resulting in a set of matrix equations of
the form

d

dt
mi _qi þQE

i �QF
i ¼ 0 (3)

for a typical (ith) element, with generalized coordinates

qi ¼

wi

yi

wiþ1

yiþ1

2
66664

3
77775 (4)

where wi and yi represent the lateral (bending) displacement and rotation at the left (ith) node of the element,
respectively. A lumped mass matrix is used, given by

m ¼ rmhL

1=2 0 0 0

0 L2=24 0 0

0 0 1=2 0

0 0 0 L2=24

2
66664

3
77775 (5)
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for an element of length L. The generalized fluid forces Qi
F on each element are evaluated by solving the

unsteady Euler equations, simultaneously with the structural equations. The generalized elastic forces in the
ith element can be expressed as a sum of two terms:

QE
i ¼ ðkþ kgÞiqi (6)

where k is the linear part of the stiffness matrix and kg is the geometric stiffness matrix arising from the
in-plane stretching caused by lateral deflections of the plate. The linear stiffness matrix for the element is
of the form

k ¼
D

L3

12 6L �12 6L

6L 4L2 �6L 2L2

�12L �6L 12 �6L

6L 2L2 �6L 4L2

2
6664

3
7775 (7)

The nonlinear (geometric) stiffness matrix can be expressed in the form

kg ¼ ðNx0 þNxÞkg0 (8)

where

kg0 ¼
1

30L

36 3L �36 3L

3L 4L2 �3L �L2

�36 �3L 36 �3L

3L �L2 �3L 4L2

2
6664

3
7775 (9)

It follows from Eq. (8) that kg is proportional to (Nx+Nx0) and thus depends on the deformations of all
elements of the panel, as is obvious from Eq. (2). For a panel of n elements, the in-plane tension caused by
lateral deflections becomes

Nx ¼
Eh

2c

Xn

i¼1

qTi kg0i
qi (10)

The structural equations of motion for the entire panel are of the same generic form as Eq. (3), with the
matrices now representing assembled mass and stiffness matrices. We do not, however, perform such an
assembly; instead, the entire aeroelastic system of space-discretized finite element equations is integrated
simultaneously, as outlined in Ref. [9]. In this procedure, only local assembly at individual nodes is performed,
and the fluid and solid elements are treated in a parallel manner. The subscript i in Eq. (3) now refers to the ith
node rather than the ith element, and the equations are time-marched node by node, both in the structural and
fluid domains. Further details of the implementation of the direct integration scheme as applied to the panel
flutter problem can be found in Refs. [11,12].

3.2. Mindlin– Reissner finite element in a mixed Eulerian– Lagrangian formulation

Fig. 2 shows a typical triangular structural finite element and the associated coordinate systems. The xyz

system is a fixed (or inertial) Eulerian system with respect to which the response of the wing structure is
expressed. The x0y0 z0 system is an element-fixed (moving) local coordinate system, and is Lagrangian in the
sense that the axes are fixed to three points in the element. The elastic deformations in each element are
calculated relative to these local systems; hence, the overall formulation may be considered ‘‘mixed’’
Eulerian–Lagrangian.

At any given time step, the three nodes of the triangle form a plane in the global coordinate system. The
z0-axis is defined orthogonal to this plane by taking the cross-product of the two planar vectors from the origin
(node 1) to the remaining two nodes. The x0-axis is aligned along nodes 1 and 2, and the y0-axis orientation is
chosen such that a right-handed coordinate system results. Note that this choice of the local coordinate system
automatically eliminates the local out-of-plane displacements at each node, i.e., w01 ¼ w02 ¼ w03 ¼ 0.
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During time-marching of the fluid–structure system, generalized coordinates and forces are expressed in
both the local element coordinates and the global system coordinates, as required. For example, if qL and q

G

are identical vectors expressed in the local and global coordinate systems, respectively, they are related
through the orthogonal transformation

qL ¼ eqG (11)

e ¼

ðex0 Þ1 ðex0 Þ2 ðex0 Þ3

ðey0 Þ1 ðey0 Þ2 ðey0 Þ3

ðez0 Þ1 ðez0 Þ2 ðez0 Þ3

2
64

3
75 (12)

where (ex0)i, (ey0)i, (ez0)i (i ¼ 1,2,3) are the components of the local coordinate system unit vectors expressed in
the global coordinate system, i.e., the direction cosines between the corresponding coordinate axes.

The nonlinear finite element is constructed as shown in Fig. 4. A discrete shear triangle (DST) is used to
model the out-of-plane bending and the transverse shear behavior, based on the formulations in Refs. [21,22].
The in-plane motion of the element is modeled using a constant strain triangle (CST), and the associated shape
functions are used in connection with the corresponding shape functions of the DST to create the stress-
stiffening matrix in local element coordinates. Because the deformations relative to the local Lagrangian
element coordinate system are of the order of the element thickness or less, the von Kármán theory can be
used to formulate this geometric stiffness matrix. It must be emphasized that the mixed formulation is essential
here for the validity of this step. If one attempts to express the geometric stiffness matrix in terms of the
displacements relative to the inertial system x,y,z, the formulation reverts back to a classical von Kármán
model, which cannot cope with the large displacements and rotations encountered in aeroelastic problems
of flexible wings of high aspect ratio. In fact, recent computational experience indicates that the von
Kármán theory gives poor or misleading results even for wings of low aspect ratio, e.g., the delta wing studied
in Ref. [5].

The total strain energy of an element can be expressed as a sum of the component strain energies as

Ue
total ¼ Um þUb þUs þUN1 þUN2 (13)

Um ¼
1

2

Z
Ae

f�mg
T½Dm�f�mgdA

Ub ¼
1

2

Z
Ae

fkgT½Db�fkgdA
1 2

3

1 2

3

h

w1'

βy1'

βx1'

w3'

w2'
βx3'

βx2'

βy3'

βy2'

1 2

3
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y ′
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Fig. 4. Components of the nonlinear Mindlin–Reissner plate finite element.



ARTICLE IN PRESS
O.O. Bendiksen, G. Seber / Journal of Sound and Vibration 315 (2008) 664–684 671
Us ¼
1

2

Z
Ae

fggT½Ds�fggdA

UN1 ¼

Z
Ae

f�mg
T½Dm�f�ngdA

UN2 ¼

Z
Ae

f�ng
T½Dm�f�ngdA (14)

where Ae is the element area and

½D� ¼
E

1� n2

1 n 0

n 1 0

0 0
1� n
2

2
664

3
775 (15)

½Dm� ¼ h½D�; ½Db� ¼
h3

12
½D� (16)

½Ds� ¼ kGh
1 0

0 1

� �
¼

kEh

2ð1þ nÞ

1 0

0 1

� �
(17)

Here, k is the shear correction factor ( ¼ 5/6 for isotropic plates). In equations (14), Um, Ub, and Us are the
quadratic-order strain energies representing the membrane stretching (CST), out-of-plane bending and shear
(DST), respectively. The cubic-order strain energy UN1 represents the nonlinear coupling of the in-plane and
out-of-plane motion, and the quartic-order strain energy UN2 represents the nonlinear coupling effect of slope
due to large deflections. The strains and curvatures are related to the element displacements, as follows:

f�mg
T ¼

qu00
qx0

qv00
qy0

qv00
qx0
þ

qu00
qy0

� �

fkgT ¼
qbx0

qx0
qby0

qy0
qby0

qx0
þ

qbx0

qy0

� �

fggT ¼
qw00
qx0
þ bx0

qw00
qy0
þ by0

� �

f�ng
T ¼

1

2
b2x0

1

2
b2x0 bx0by

� �
(18)

where

u0ðx0; y0; z0; tÞ ¼ u00ðx
0; y0; tÞ þ z0bx0 ðx

0; y0; tÞ

v0ðx0; y0; z0; tÞ ¼ v00ðx
0; y0; tÞ þ z0by0 ðx

0; y0; tÞ

w0ðx0; y0; tÞ ¼ w00ðx
0; y0; tÞ (19)

and u0
0, v0

0, and w0
0 are the corresponding displacements of the plate MS.

In order to obtain an element free of shear locking, the equilibrium equations are used to solve for the
transverse shear strains {g}, with the help of the constitutive equations. The element stiffness matrix is then
formulated using quadratic interpolation functions for the rotation fields

bx ¼
X6
i¼1

Niðx; ZÞbxi
ðtÞ;

X6
i¼1

Niðx; ZÞbyi
ðtÞ (20)

where bxi
and byi

are the nodal values at the corner nodes 1,2,3 and the mid-side nodes 4,5,6, and primes have
been dropped for convenience. After eliminating w, x and w,y at the corner nodes and bn and bs at the mid-side
nodes, the number of unknowns associated with the flexural and transverse shear problem is reduced to nine,

fqe
wbg ¼ fw1 bx1

by1
w2 bx2

by2
w3 bx3

by3
gT (21)
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The stiffness matrix for the in-plane CST element is based on linear interpolation functions, and the
development is well-known and available in standard finite element texts. The final displacement vector for the
‘‘assembled’’ triangle used in the present study is given by

fqeg ¼ fw1 bx1
by1

w2 bx2
by2

w3 bx3
by3

u1 v1 u2 v2 u3 v3g
T (22)

The 15� 15 element stiffness matrix of the nonlinear model can be obtained from the principle of stationary
potential energy, using the strain energy relations (14). To calculate the nonlinear coupling partition, the
values of the nodal degrees of freedom are required at the current time step. The structure of the element
stiffness matrix is as follows:

½Ke�15�15 ¼
½DST� ½NLC�

½NLC�T ½CST�

" #
(23)

where [DST]9� 9 is the out-of-plane partition, [CST]6� 6 the in-plane partition, and [NLC]9� 6 the nonlinear
coupling partition.

The element in-plane deformations are calculated by comparing the deformed element to its undeformed
state, to determine the nodal displacements. Similarly, the element flexural deformations arising from the
nodal rotations bx0 , by0 are determined by comparing the deformed and undeformed unit vectors at the element
nodes. The undeformed nodal vectors are normal to the plane formed by the triangle nodes at all times, and
coincide with the local z0-axis. The deformed unit vectors are updated at each time step by the incremental
rotations in the global x and y directions, using the finite rotation relation

ntnþ1

d ¼ cosðDfÞntn

d þ ð1� cosðDfÞÞðn � ntn

d Þnþ sinðDfÞðn� ntn

d Þ (24)

where

Df ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDbxÞ

2
þ ðDbyÞ

2
þ ðDbzÞ

2
q

(25)

is the magnitude of the rotation, and

n ¼ ð�Dbyiþ Dbxjþ DbzkÞ=Df (26)

is the normalized rotation vector, and ntn

d ,n
tnþ1

d are the deformed unit vectors at time steps n and n+1,
respectively, expressed in the global coordinate system.

Although the incremental rotations at each step can be approximated as infinitesimal rotations, the use of
finite rotation expressions has been found to provide more accurate solutions, with a minimal increase in
computational cost. By determining the amount of rotation that the undeformed vector must undergo to
coincide with the corresponding deformed vector, local rotational deformations can be calculated in terms of
the deformed unit vector expressed in local coordinates, i.e., ðntn

d Þ
L, at the beginning of each time step tn,

as follows:

bx0 ¼ ðn
tn

d Þ
L
x

cos�1ððntn

d Þ
L
z Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ððntn

d Þ
L
x Þ

2
þ ððntn

d Þ
L
y Þ

2
q ; by0 ¼ ðn

tn

d Þ
L
y

cos�1ððntn

d Þ
L
z Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ððntn

d Þ
L
x Þ

2
þ ððntn

d Þ
L
y Þ

2
q (27)

Cubic interpolation functions are used as a basis for deriving the consistent mass matrix and the generalized
aerodynamic loads associated with the out-of-plane degrees of freedom. For the in-plane degrees of freedom,
we make use of the standard mass matrix for the CST element, and the corresponding generalized
aerodynamic forces are calculated using the associated linear shape functions for the element. All integrals are
evaluated using Gaussian integration in natural (triangular) coordinates. Because the Gaussian integration
points are fixed with respect to the fluid elements at the wing surface, this procedure leads to an efficient and
accurate numerical evaluation of the consistent generalized aerodynamic forces.
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4. Nonlinear fluid model

In the present computational approach, it is convenient to base the fluid dynamics model on the integral or
weak form of the conservation laws,

q
qt

Z
O
WdV þ

Z
qO

F � ndS ¼ 0 (28)

where O is an element volume with boundary qO moving with velocity U, n ¼ niei is the outward unit normal
to qO, ei are the unit vectors in the xi directions, and

W ¼

r

ru1

ru2

ru3

re

2
6666664

3
7777775

Fj ¼

rðuj �UjÞ

ru1ðuj �UjÞ � s1j

ru2ðuj �UjÞ � s2j

ru3ðuj �UjÞ � s3j

reðuj �UjÞ � sijui

2
6666664

3
7777775

(29)

Here, r is the density, u the material velocity, and e the total energy per unit mass. Furthermore, uj and Uj are
the Cartesian components of u and U, respectively, sij is the cartesian stress tensor, and F ¼ Fjej. In the
inviscid (Euler) flow model used in this paper, sij ¼ �pdij, and the equation of state is used to eliminate the
pressure p.

By using a mixed Eulerian–Lagrangian formulation, a Galerkin finite element discretization can be obtained
on an unstructured mesh, including the effects of mesh motion and element deformations. A typical Galerkin
finite element discretization results in a space-discretized set of nodal equations for the fluid domain of the
form [9]

d

dt

X
j

mijWj

 !
þQi �Di ¼ 0 (30)

where Wj are the nodal values of W, and the summation on j extends over all nodes in the ‘‘superelement’’ or
control volume associated with node i, i.e., the union of all elements that meet at node i. Here, mij is the
consistent mass matrix, Qi is the flux vector, and Di is a vector of dissipative fluxes of a suitable type, to
capture shocks and stabilize the scheme. For example, the Jameson–Mavriplis-type dissipation operators have
been found to be very well suited for nonlinear aeroelastic calculations. For further details, see Ref. [9].

A finite element discretization of the structural domain (wing structure) leads to a similar set of equations, in
term of the generalized Lagrangian displacement coordinates qj at the nodes:

d

dt

X
j

mij _qj

 !
þQE

i þQD
i �QF

i ¼ 0 (31)

where the sum (assembly) must be carried out over all elements that meet at node i. Here, Qi
E are the elastic

forces, Qi
D are the structural damping forces, and Qi

F are the consistent generalized fluid forces associated
with the ith node.

A multistage Runge–Kutta scheme is used to integrate the space-discretized system of nonlinear equations
forward in time. Time accuracy is maintained by ensuring that the fluid and structural finite element equations
are time-marched simultaneously, within the same multistage Runge–Kutta execution loop. The numerical
calculations start with the converged steady aeroelastic (or the steady aerodynamic) solution for the wing.
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A suitable initial velocity is then imparted to the model in bending or in torsion (or both), and the time-
marching solution is initiated.

5. Fluid–structure coupling

The fluid–structure boundary condition of tangent flow is satisfied on the exact fluid–structure boundary,
using the actual deformations and velocities of the wing surface, as defined by the finite element shape
functions and the generalized coordinates and velocities at the current time step. Although this type of
implementation is more difficult than a loosely coupled scheme that lacks strict synchronization, it is essential
for obtaining the correct energy exchange between the fluid and the structure.

In the direct Eulerian–Lagrangian finite element code, the consistent unsteady fluid forces are first
calculated in the local element coordinate systems, using 13-point Gaussian quadrature, and then transformed
to the global system as the space-discretized aeroelastic equations are time-marched. The resulting unsteady
fluid forces are captured as true follower forces, resulting in a more accurate prediction of the dynamic
response and stability of the wing.

6. Results

Results are presented for two aeroelastic stability problems where structural and fluid nonlinearities play a
fundamental role: (1) transonic panel flutter and (2) transonic flutter of a high-aspect-ratio swept wing.

6.1. Transonic panel flutter

Fig. 5 shows the unstructured triangular mesh used in the fluid domain, with a total of 1804 nodes, of which
51 nodes were on the panel surface. The far-field boundary was set at a radius of 25 panel chords, Fig. 5b. The
plate structure was discretized using 10 structural finite elements, although select calculations with 25 elements
have also been performed to check convergence. In all results presented here, the externally applied in-plane
load Nx0 was set to zero, but the in-plane stretch term Nx was retained in the equations.

In the strongly nonlinear transonic range, at or near Mach 1, interactions between the structural
and aerodynamic nonlinearities lead to travelling wave flutter. Fig. 6 shows this type of flutter for a thin
(h/c ¼ 0.004), simply supported aluminum panel at 20,000 ft altitude. Part (a) of the figure shows the
transverse displacements at 1/4-chord, midchord, and 3/4-chord, as a function of time. Significant phase
differences are observed between the chord locations, indicating that the flutter mode is a generalized wave
Fig. 5. Triangular unstructured mesh used in fluid domain in the transonic panel calculations: (a) near field view, illustrating mesh

deformations; (b) far-field view.
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travelling in the downstream direction. The limit cycle amplitude is essentially reached within one period of
oscillation, suggesting a strong instability. The maximum amplitude w/h is around 1.5–2, which is within the
range of validity of the von Kármán plate theory.

Although the motion is periodic, it is certainly not simple harmonic motion, nor is the wave form the same
at all positions on the plate. The travelling wave may be considered a localized wave packet, which changes
shape and ‘‘evolves’’ as it moves from the leading edge to the trailing edge of the panel. These interesting
characteristics of the flutter mode arise from strong interactions between the nonlinearities in the fluid and the
structure.

Fig. 6b shows the instantaneous energy history of the panel, which is periodic but highly irregular, with six
peaks within each period. Here, E is the kinetic plus the strain energy, and W is the work done by the fluid on
the entire panel. Fig. 6c shows the deflected shape of the panel during a typical half-period, illustrating the
nonuniform downstream propagation of the flutter wave. Snapshots of the instantaneous panel deflections at
equal time intervals during one complete LCO are presented in Fig. 6d. The flow next to the panel is mixed
supersonic–subsonic, and supersonic pockets terminated by strong shocks exist next to the panel surface;
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see Fig. 7. As the panel deflects, the shocks move in concert with the panel motion, sometimes vanishing over
parts of the limit cycle period.

Inclusion of the geometric nonlinearities in the structural model is essential in order to obtain the correct
stability behavior of the plate. If a linear structural model is used, no flutter is predicted in the transonic region
near Mach 1-only panel divergence. Inclusion of the geometric nonlinearities completely changes the dynamic
stability of the plate, and now travelling wave flutter is observed. It is interesting to note that in the transonic
range between Mach 0.95 and 1.2, the structural and aerodynamic nonlinearities interact to generate travelling
wave flutter even in panels of low chord-to-width ratio, where earlier studies based on linearized aerodynamics
only predict single-degree-of-freedom flutter.

At transonic Mach numbers below unity, the prevailing panel instability is divergence, as discussed in
Ref. [11]. Both outward and inward ‘‘aeroelastic buckling’’ of the panel occur, at least for cases where Nx0 is
zero. Strong shocks appear on the panel surface and are believed to play an important role in the divergence
instability. If the nonlinear stiffening due to the in-plane load Nx is neglected (i.e., if a linear structural model is
used), then a shock-induced, explosive divergence instability can occur over a range of transonic Mach
numbers. In these cases, the panel deflections grow without bounds, until the aeroelastic code breaks down.
These shock-induced divergence instabilities are often triggered after the panel displacements reach a critical
amplitude during flutter, and have been observed (for the linear panel) at Mach numbers as high as 1.3.

For sufficiently thin panels, flutter becomes possible at transonic Mach numbers below unity. This is
illustrated in Fig. 8a, for a simply supported aluminum panel with h/c ¼ 0.002, at a Mach number of 0.95. As
the Mach number at upstream infinity is increased through the range 1.0–1.3, the travelling wave character of
the flutter mode, as indicated by temporal phase differences between the panel motions at the 1/4, 1/2, and 3/4
positions, gradually disappears. Around Mach 1.2, the strong shocks have also disappeared and the panel
aeroelastic response becomes much more ‘‘regular’’, Fig. 8b. The flutter mode is now composed of a standing
wave with a small travelling wave component superimposed, resulting in a mode that continually changes
shape.

At higher Mach numbers, outside the transonic range, the flutter mode is again a standing wave. In the
Mach number range 1.4–1.5, higher panel modes become excited, as reported in Ref. [11], but the modes are
primarily of the standing wave type. These observations strongly suggest that the occurrence of travelling
wave panel flutter in two-dimensional or high-aspect-ratio panels is a transonic phenomenon, brought about
by the nonlinear aerodynamics. The presence of moving shocks on the panel surface becomes a strong driver
in generating the complex flexural flutter waves observed in the panel. Structural nonlinearities appears to play
a fundamental role as well, by coupling normal modes and by generating higher harmonics in the flutter wave
that helps in generating travelling waves.
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6.2. Transonic limit cycle flutter of a high-aspect-ratio wing

The G-wing shown in Fig. 9 is representative of high-aspect-ratio wings of modern transport aircraft,
designed to cruise at high subsonic or transonic Mach numbers. It is similar to a wind tunnel model tested at
DLR in Göttingen [7]. The effect of wing sweep is very pronounced, as it leads to strong interactions between
structural (geometric) and aerodynamic nonlinearities, resulting in limit cycle flutter. If a linear structural
model is used, no limit cycle flutter is predicted at the density and dynamic pressure where limit cycle flutter
was observed in the wind tunnel tests, only stable decay to zero amplitudes, Fig. 10a. In order to trigger limit
cycle flutter with the linear structural model, the dynamic pressure must be increased by 273%, Fig. 10b, but
now the predicted flutter frequency is much higher (94Hz) than was observed in the wind tunnel tests
(50.4Hz). The nonlinear structural model, on the other hand, predicts limit cycle flutter at the experimental
Mach number and tunnel conditions reported in Ref. [7]; see Fig. 10c. The predicted flutter frequency of
52.4Hz is very close (+4%) to the frequency of 50.4Hz observed during wind tunnel tests. The Direct
Eulerian–Lagrangian computational method was used in all of the swept wing calculations, using the
Mindlin–Reissner finite element model outlined in Section 3.2.
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The reason for the large differences between the LCO amplitudes predicted using the linear vs. the nonlinear
Mindlin–Reissner FE models can be understood in terms of the effect that the structural washout
phenomenon has on the transonic flow-field around the wing, especially on the location and motion of the
part-chord shocks on the wing surface. The structural washout effect is illustrated in Fig. 11, and arises from
the fact that streamwise wing segments undergo different rotations about the unswept y-axis than do
chordwise segments. In the case of a high-aspect-ratio swept wing, the structural washout effect from
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aeroelastic deformations plays a fundamental role in throttling the energy flow from the airstream to the wing,
resulting in limit cycle flutter. As the wing bends, the washout reduces the angle of attack of streamwise chord
sections, unloading the outboard region of the wing, reducing the shock strength and shifting the part-chord
shocks in the upstream direction. The weaker and more forward shocks lead to an earlier transition (at lower
amplitudes) from Type A to Type B shock motion, which decreases the aerodynamic work by the air on the
wing, per cycle, resulting in a limit cycle flutter.

Although the nonlinear structure is stiffer than the corresponding linear structure, it is actually less stable
for this class of wings, because the structural washout is also less. The aeroelastic problem is inherently
nonlinear, and neither the aerodynamic nor the structural nonlinearities can be ignored, or an incorrect
assessment of aeroelastic stability is obtained. The strong interactions between aerodynamic and structural
nonlinearities lead to an interesting limit cycle flutter behavior of the G-wing, where limit cycle flutter is
observed over a wide range of transonic Mach numbers, air densities (or altitudes), and dynamic pressures. In
some cases, the calculated limit cycle flutter amplitudes were observed to increase with decreasing air density,
suggesting that high-altitude transonic flutter might occur, even if the wing is stable at lower altitudes.

No instances of LCO-type flutter were detected at subcritical Mach numbers. Fig. 12 shows the calculated
aeroelastic response for Mach 0.75. It is believed that the flow around the wing is entirely subsonic in this case,
and the dynamic response shows exponential decay. Fig. 13 shows the predicted LCO flutter amplitude vs.
Mach number, for an air density of 0.4177 kg/m3, which corresponds to a density altitude of roughly 10 km
(32,800 ft). Except in the Mach number range 0.89–0.96, the LCO amplitudes are stable, although subtle
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‘‘nonclassical’’ behaviors are observed; that is, the motion does not appear exactly periodic, nor does it appear
to converge to such a state even after many oscillation cycles. This is reflected in the phase plots as a
‘‘smearing’’ or ‘‘broadening’’ of the limit cycle, and is believed to be caused by irreversible (nonconservative)
interactions between the structural nonlinearities arising from large deflections, and aerodynamic
nonlinearities caused by moving shocks (entropy production).

In the Mach number range 0.89–0.96, the limit cycle flutter mode exhibits an amplitude instability, reflected
by a slowly growing LCO amplitude starting at Mach 0.89, with a progressively increasing growth rate as the
Mach number is increased. This instability is believed to be triggered by a weak nonuniformity on the time
scale, which causes the basin of attraction of the limit cycle to change with time. It is a reminder that we a
dealing with an essentially nonconservative nonlinear system, and classical concepts from nonlinear dynamics
based on potential theory may not apply. At Mach 0.865, two stable limit cycles were observed, depending on
the initial conditions, Fig. 13b. It is likely that such nested LCOs extend to other neighboring Mach numbers
as well.

Between Mach 0.96 and 0.97, the LCO amplitudes undergo a rapid decay to zero, as shown in Fig. 14. At
Mach 0.99, at limit cycle of very small amplitude reappears (not shown). The reason for this surprising
behavior is not fully understood, but is believed to be closely connected with the progressive aft movement of
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the mean positions of the part-chord shocks, and the fact that the shocks approach the trailing edge as
MN-1. It should be noted that the temperature has been kept constant at the sea level, standard day value of
59 1F (518.7 1R or 288.15K) in these calculations. This would correspond to wind tunnel tests were the density
and Mach number are varied while keeping the air temperature roughly constant at ambient conditions.

Because of strong interactions between the structural and aerodynamic nonlinearities, limit cycle flutter is
predicted over a wide range of altitudes (or air densities/dynamic pressures). At Mach 0.865, for example, the
LCO-type flutter of the G-wing persists down to very low densities, representing density altitudes well into the
stratosphere, as shown in Fig. 15. In some cases, the calculated limit cycle flutter amplitudes were observed to
increase with decreasing air density, suggesting that high-altitude transonic flutter could become an issue.

Finally, Figs. 16 and 17 illustrate the relative insensitivity of the LCO amplitudes to angle of attack, for two
different air densities (or altitudes). These results suggest that the limit cycle flutter behavior for this particular
wing is not isolated, but persists over a wide range of flight altitudes and aircraft trim conditions.

6.3. Comparison of structural and computational models

As mentioned in the Introduction, the von Kármán structural model does not perform well in aeroelastic
stability problems involving cantilevered wings in general, not just high-aspect-ratio wings. Fig. 18 shows a
comparison of the calculated flutter behavior of the ONERA M6 wing at Mach 0.84, as obtained using the
von Kármán structural model and compared to the results obtained with the linear and fully nonlinear models
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discussed in Section 3 of this paper. This wing is of moderate aspect ratio (A ¼ 3.8) and calculations based on
a linear structural model have been presented in Ref. [9]. As can be seen from Fig. 18, the aeroelastic
calculation based on the von Kármán model greatly underestimates the growth of the wing total energy,
Fig. 18b, and thus completely misses the explosive nature of the emerging flutter. In fact, the linear structural
model does a better job, both qualitatively and quantitatively, in this example.

7. Concluding remarks

In both example problems considered in this paper, the combined effect of structural and aerodynamic
nonlinearities on the stability of the fluid–structure system is much larger and qualitatively different than what
would be anticipated from the individual effects of the structural and fluid nonlinearities, if considered
separately. If a linear structural model is used with nonlinear Euler-based aerodynamics in the panel case, for
example, only nonphysical divergence instabilities are observed in the transonic region. Similarly, in the case
of the high-aspect-ratio wing considered in Section 6, if a linear structural model is used with nonlinear
aerodynamics, the calculated transonic flutter dynamic pressure is higher than the experimental value by
almost a factor of 3, and the predicted limit cycle flutter frequency is much higher than was observed during
wind tunnel tests.

For plates where all edges are fixed or simply supported, the von Kármán model performs reasonably well,
although it overestimates the stiffness of the structure and thus tends to underestimate the limit cycle flutter
amplitudes. But in the case of cantilevered wings undergoing moderate to large deflections, it greatly
overestimates the stiffening effects arising from the in-plane strains, leading to a significant underestimation of
the limit cycle flutter amplitudes, or to an erroneous prediction of no flutter, as in the case of the case of the
high-aspect-ratio transonic wing considered in this study.

In the high-aspect-ratio swept wing example, the structural washout effect from aeroelastic deformations
plays an important role in determining flutter stability, resulting in a strong coupling between the geometric
structural nonlinearities and the aerodynamic nonlinearities caused by shock motion. For swept wings of
sufficient flexibility, the aeroelastic washout effect can produce the counterintuitive result that decreasing the
dynamic pressure by decreasing the density at a given Mach number may actually be destabilizing—
a conclusion of obvious practical relevance to both wind tunnel and flight testing.
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